/** * @author jbouny / https://github.com/jbouny * * Work based on : * @author Slayvin / http://slayvin.net : Flat mirror for three.js * @author Stemkoski / http://www.adelphi.edu/~stemkoski : An implementation of water shader based on the flat mirror * @author Jonas Wagner / http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL */ THREE.Water = function(geometry, options) { THREE.Mesh.call(this, geometry); const scope = this; options = options || {}; const textureWidth = options.textureWidth !== undefined ? options.textureWidth : 512; const textureHeight = options.textureHeight !== undefined ? options.textureHeight : 512; const clipBias = options.clipBias !== undefined ? options.clipBias : 0.0; const alpha = options.alpha !== undefined ? options.alpha : 1.0; const time = options.time !== undefined ? options.time : 0.0; const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null; const sunDirection = options.sunDirection !== undefined ? options.sunDirection : new THREE.Vector3(0.70707, 0.70707, 0.0); const sunColor = new THREE.Color( options.sunColor !== undefined ? options.sunColor : 0xffffff ); const waterColor = new THREE.Color( options.waterColor !== undefined ? options.waterColor : 0x7f7f7f ); const eye = options.eye !== undefined ? options.eye : new THREE.Vector3(0, 0, 0); const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0; const side = options.side !== undefined ? options.side : THREE.FrontSide; const fog = options.fog !== undefined ? options.fog : false; // const mirrorPlane = new THREE.Plane(); const normal = new THREE.Vector3(); const mirrorWorldPosition = new THREE.Vector3(); const cameraWorldPosition = new THREE.Vector3(); const rotationMatrix = new THREE.Matrix4(); const lookAtPosition = new THREE.Vector3(0, 0, -1); const clipPlane = new THREE.Vector4(); const view = new THREE.Vector3(); const target = new THREE.Vector3(); const q = new THREE.Vector4(); const textureMatrix = new THREE.Matrix4(); const mirrorCamera = new THREE.PerspectiveCamera(); const parameters = { minFilter: THREE.LinearFilter, magFilter: THREE.LinearFilter, format: THREE.RGBFormat, stencilBuffer: false }; const renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters ); if ( !THREE.Math.isPowerOfTwo(textureWidth) || !THREE.Math.isPowerOfTwo(textureHeight) ) { renderTarget.texture.generateMipmaps = false; } const mirrorShader = { uniforms: THREE.UniformsUtils.merge([ THREE.UniformsLib["fog"], THREE.UniformsLib["lights"], { normalSampler: { value: null }, mirrorSampler: { value: null }, alpha: { value: 1.0 }, time: { value: 0.0 }, size: { value: 1.0 }, distortionScale: { value: 20.0 }, textureMatrix: { value: new THREE.Matrix4() }, sunColor: { value: new THREE.Color(0x7f7f7f) }, sunDirection: { value: new THREE.Vector3(0.70707, 0.70707, 0) }, eye: { value: new THREE.Vector3() }, waterColor: { value: new THREE.Color(0x555555) } } ]), vertexShader: [ "uniform mat4 textureMatrix;", "uniform float time;", "varying vec4 mirrorCoord;", "varying vec4 worldPosition;", THREE.ShaderChunk["fog_pars_vertex"], THREE.ShaderChunk["shadowmap_pars_vertex"], "void main() {", " mirrorCoord = modelMatrix * vec4( position, 1.0 );", " worldPosition = mirrorCoord.xyzw;", " mirrorCoord = textureMatrix * mirrorCoord;", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk["fog_vertex"], THREE.ShaderChunk["shadowmap_vertex"], "}" ].join("\n"), fragmentShader: [ "uniform sampler2D mirrorSampler;", "uniform float alpha;", "uniform float time;", "uniform float size;", "uniform float distortionScale;", "uniform sampler2D normalSampler;", "uniform vec3 sunColor;", "uniform vec3 sunDirection;", "uniform vec3 eye;", "uniform vec3 waterColor;", "varying vec4 mirrorCoord;", "varying vec4 worldPosition;", "vec4 getNoise( vec2 uv ) {", " vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0);", " vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 );", " vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 );", " vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 );", " vec4 noise = texture2D( normalSampler, uv0 ) +", " texture2D( normalSampler, uv1 ) +", " texture2D( normalSampler, uv2 ) +", " texture2D( normalSampler, uv3 );", " return noise * 0.5 - 1.0;", "}", "void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) {", " vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) );", " float direction = max( 0.0, dot( eyeDirection, reflection ) );", " specularColor += pow( direction, shiny ) * sunColor * spec;", " diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse;", "}", THREE.ShaderChunk["common"], THREE.ShaderChunk["packing"], THREE.ShaderChunk["bsdfs"], THREE.ShaderChunk["fog_pars_fragment"], THREE.ShaderChunk["lights_pars_begin"], THREE.ShaderChunk["shadowmap_pars_fragment"], THREE.ShaderChunk["shadowmask_pars_fragment"], "void main() {", " vec4 noise = getNoise( worldPosition.xz * size );", " vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) );", " vec3 diffuseLight = vec3(0.0);", " vec3 specularLight = vec3(0.0);", " vec3 worldToEye = eye-worldPosition.xyz;", " vec3 eyeDirection = normalize( worldToEye );", " sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight );", " float distance = length(worldToEye);", " vec2 distortion = surfaceNormal.xz * ( 0.001 + 1.0 / distance ) * distortionScale;", " vec3 reflectionSample = vec3( texture2D( mirrorSampler, mirrorCoord.xy / mirrorCoord.z + distortion ) );", " float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 );", " float rf0 = 0.3;", " float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 );", " vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor;", " vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ) * getShadowMask(), ( vec3( 0.1 ) + reflectionSample * 0.9 + reflectionSample * specularLight ), reflectance);", " vec3 outgoingLight = albedo;", " gl_FragColor = vec4( outgoingLight, alpha );", THREE.ShaderChunk["tonemapping_fragment"], THREE.ShaderChunk["fog_fragment"], "}" ].join("\n") }; const material = new THREE.ShaderMaterial({ fragmentShader: mirrorShader.fragmentShader, vertexShader: mirrorShader.vertexShader, uniforms: THREE.UniformsUtils.clone(mirrorShader.uniforms), transparent: true, lights: true, side: side, fog: fog }); material.uniforms.mirrorSampler.value = renderTarget.texture; material.uniforms.textureMatrix.value = textureMatrix; material.uniforms.alpha.value = alpha; material.uniforms.time.value = time; material.uniforms.normalSampler.value = normalSampler; material.uniforms.sunColor.value = sunColor; material.uniforms.waterColor.value = waterColor; material.uniforms.sunDirection.value = sunDirection; material.uniforms.distortionScale.value = distortionScale; material.uniforms.eye.value = eye; scope.material = material; scope.mirrorCamera = mirrorCamera; scope.onBeforeRender = function(renderer, scene, camera) { mirrorWorldPosition.setFromMatrixPosition(scope.matrixWorld); cameraWorldPosition.setFromMatrixPosition(camera.matrixWorld); rotationMatrix.extractRotation(scope.matrixWorld); normal.set(0, 0, 1); normal.applyMatrix4(rotationMatrix); view.subVectors(mirrorWorldPosition, cameraWorldPosition); // Avoid rendering when mirror is facing away if (view.dot(normal) > 0) return; view.reflect(normal).negate(); view.add(mirrorWorldPosition); rotationMatrix.extractRotation(camera.matrixWorld); lookAtPosition.set(0, 0, -1); lookAtPosition.applyMatrix4(rotationMatrix); lookAtPosition.add(cameraWorldPosition); target.subVectors(mirrorWorldPosition, lookAtPosition); target.reflect(normal).negate(); target.add(mirrorWorldPosition); mirrorCamera.position.copy(view); mirrorCamera.up.set(0, 1, 0); mirrorCamera.up.applyMatrix4(rotationMatrix); mirrorCamera.up.reflect(normal); mirrorCamera.lookAt(target); mirrorCamera.far = camera.far; // Used in WebGLBackground mirrorCamera.updateMatrixWorld(); mirrorCamera.projectionMatrix.copy(camera.projectionMatrix); // Update the texture matrix textureMatrix.set( 0.5, 0.0, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0 ); textureMatrix.multiply(mirrorCamera.projectionMatrix); textureMatrix.multiply(mirrorCamera.matrixWorldInverse); // Now update projection matrix with new clip plane, implementing code from: http://www.terathon.com/code/oblique.html // Paper explaining this technique: http://www.terathon.com/lengyel/Lengyel-Oblique.pdf mirrorPlane.setFromNormalAndCoplanarPoint(normal, mirrorWorldPosition); mirrorPlane.applyMatrix4(mirrorCamera.matrixWorldInverse); clipPlane.set( mirrorPlane.normal.x, mirrorPlane.normal.y, mirrorPlane.normal.z, mirrorPlane.constant ); const projectionMatrix = mirrorCamera.projectionMatrix; q.x = (Math.sign(clipPlane.x) + projectionMatrix.elements[8]) / projectionMatrix.elements[0]; q.y = (Math.sign(clipPlane.y) + projectionMatrix.elements[9]) / projectionMatrix.elements[5]; q.z = -1.0; q.w = (1.0 + projectionMatrix.elements[10]) / projectionMatrix.elements[14]; // Calculate the scaled plane vector clipPlane.multiplyScalar(2.0 / clipPlane.dot(q)); // Replacing the third row of the projection matrix projectionMatrix.elements[2] = clipPlane.x; projectionMatrix.elements[6] = clipPlane.y; projectionMatrix.elements[10] = clipPlane.z + 1.0 - clipBias; projectionMatrix.elements[14] = clipPlane.w; eye.setFromMatrixPosition(camera.matrixWorld); // const currentRenderTarget = renderer.getRenderTarget(); const currentVrEnabled = renderer.vr.enabled; const currentShadowAutoUpdate = renderer.shadowMap.autoUpdate; scope.visible = false; renderer.vr.enabled = false; // Avoid camera modification and recursion renderer.shadowMap.autoUpdate = false; // Avoid re-computing shadows renderer.render(scene, mirrorCamera, renderTarget, true); scope.visible = true; renderer.vr.enabled = currentVrEnabled; renderer.shadowMap.autoUpdate = currentShadowAutoUpdate; renderer.setRenderTarget(currentRenderTarget); }; }; THREE.Water.prototype = Object.create(THREE.Mesh.prototype); THREE.Water.prototype.constructor = THREE.Water;