/**
 * @author zz85 / https://github.com/zz85
 *
 * Based on "A Practical Analytic Model for Daylight"
 * aka The Preetham Model, the de facto standard analytic skydome model
 * http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
 *
 * First implemented by Simon Wallner
 * http://www.simonwallner.at/projects/atmospheric-scattering
 *
 * Improved by Martin Upitis
 * http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
 *
 * Three.js integration by zz85 http://twitter.com/blurspline
 */

THREE.Sky = function() {
  const shader = THREE.Sky.SkyShader;

  const material = new THREE.ShaderMaterial({
    fragmentShader: shader.fragmentShader,
    vertexShader: shader.vertexShader,
    uniforms: THREE.UniformsUtils.clone(shader.uniforms),
    side: THREE.BackSide
  });

  THREE.Mesh.call(this, new THREE.BoxBufferGeometry(1, 1, 1), material);
};

THREE.Sky.prototype = Object.create(THREE.Mesh.prototype);
THREE.Sky.prototype.constructor = THREE.Sky;

THREE.Sky.SkyShader = {
  uniforms: {
    luminance: { value: 1 },
    turbidity: { value: 2 },
    rayleigh: { value: 1 },
    mieCoefficient: { value: 0.005 },
    mieDirectionalG: { value: 0.8 },
    sunPosition: { value: new THREE.Vector3() }
  },

  vertexShader: [
    "uniform vec3 sunPosition;",
    "uniform float rayleigh;",
    "uniform float turbidity;",
    "uniform float mieCoefficient;",

    "varying vec3 vWorldPosition;",
    "varying vec3 vSunDirection;",
    "varying float vSunfade;",
    "varying vec3 vBetaR;",
    "varying vec3 vBetaM;",
    "varying float vSunE;",

    "const vec3 up = vec3( 0.0, 1.0, 0.0 );",

    // constants for atmospheric scattering
    "const float e = 2.71828182845904523536028747135266249775724709369995957;",
    "const float pi = 3.141592653589793238462643383279502884197169;",

    // wavelength of used primaries, according to preetham
    "const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );",
    // this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
    // (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
    "const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );",

    // mie stuff
    // K coefficient for the primaries
    "const float v = 4.0;",
    "const vec3 K = vec3( 0.686, 0.678, 0.666 );",
    // MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
    "const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );",

    // earth shadow hack
    // cutoffAngle = pi / 1.95;
    "const float cutoffAngle = 1.6110731556870734;",
    "const float steepness = 1.5;",
    "const float EE = 1000.0;",

    "float sunIntensity( float zenithAngleCos ) {",
    "	zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );",
    "	return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );",
    "}",

    "vec3 totalMie( float T ) {",
    "	float c = ( 0.2 * T ) * 10E-18;",
    "	return 0.434 * c * MieConst;",
    "}",

    "void main() {",

    "	vec4 worldPosition = modelMatrix * vec4( position, 1.0 );",
    "	vWorldPosition = worldPosition.xyz;",

    "	gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );",

    "	vSunDirection = normalize( sunPosition );",

    "	vSunE = sunIntensity( dot( vSunDirection, up ) );",

    "	vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );",

    "	float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );",

    // extinction (absorbtion + out scattering)
    // rayleigh coefficients
    "	vBetaR = totalRayleigh * rayleighCoefficient;",

    // mie coefficients
    "	vBetaM = totalMie( turbidity ) * mieCoefficient;",

    "}"
  ].join("\n"),

  fragmentShader: [
    "varying vec3 vWorldPosition;",
    "varying vec3 vSunDirection;",
    "varying float vSunfade;",
    "varying vec3 vBetaR;",
    "varying vec3 vBetaM;",
    "varying float vSunE;",

    "uniform float luminance;",
    "uniform float mieDirectionalG;",

    "const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );",

    // constants for atmospheric scattering
    "const float pi = 3.141592653589793238462643383279502884197169;",

    "const float n = 1.0003;", // refractive index of air
    "const float N = 2.545E25;", // number of molecules per unit volume for air at
    // 288.15K and 1013mb (sea level -45 celsius)

    // optical length at zenith for molecules
    "const float rayleighZenithLength = 8.4E3;",
    "const float mieZenithLength = 1.25E3;",
    "const vec3 up = vec3( 0.0, 1.0, 0.0 );",
    // 66 arc seconds -> degrees, and the cosine of that
    "const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;",

    // 3.0 / ( 16.0 * pi )
    "const float THREE_OVER_SIXTEENPI = 0.05968310365946075;",
    // 1.0 / ( 4.0 * pi )
    "const float ONE_OVER_FOURPI = 0.07957747154594767;",

    "float rayleighPhase( float cosTheta ) {",
    "	return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );",
    "}",

    "float hgPhase( float cosTheta, float g ) {",
    "	float g2 = pow( g, 2.0 );",
    "	float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );",
    "	return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );",
    "}",

    // Filmic ToneMapping http://filmicgames.com/archives/75
    "const float A = 0.15;",
    "const float B = 0.50;",
    "const float C = 0.10;",
    "const float D = 0.20;",
    "const float E = 0.02;",
    "const float F = 0.30;",

    "const float whiteScale = 1.0748724675633854;", // 1.0 / Uncharted2Tonemap(1000.0)

    "vec3 Uncharted2Tonemap( vec3 x ) {",
    "	return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;",
    "}",

    "void main() {",
    // optical length
    // cutoff angle at 90 to avoid singularity in next formula.
    "	float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );",
    "	float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );",
    "	float sR = rayleighZenithLength * inverse;",
    "	float sM = mieZenithLength * inverse;",

    // combined extinction factor
    "	vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );",

    // in scattering
    "	float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );",

    "	float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );",
    "	vec3 betaRTheta = vBetaR * rPhase;",

    "	float mPhase = hgPhase( cosTheta, mieDirectionalG );",
    "	vec3 betaMTheta = vBetaM * mPhase;",

    "	vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );",
    "	Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );",

    // nightsky
    "	vec3 direction = normalize( vWorldPosition - cameraPos );",
    "	float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]",
    "	float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]",
    "	vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );",
    "	vec3 L0 = vec3( 0.1 ) * Fex;",

    // composition + solar disc
    "	float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );",
    "	L0 += ( vSunE * 19000.0 * Fex ) * sundisk;",

    "	vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );",

    "	vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );",
    "	vec3 color = curr * whiteScale;",

    "	vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );",

    "	gl_FragColor = vec4( retColor, 1.0 );",

    "}"
  ].join("\n")
};

AFRAME.registerComponent("skybox", {
  schema: {
    turbidity: { type: "number", default: 10 },
    rayleigh: { type: "number", default: 2 },
    luminance: { type: "number", default: 1 },
    mieCoefficient: { type: "number", default: 0.005 },
    mieDirectionalG: { type: "number", default: 0.8 },
    inclination: { type: "number", default: 0 },
    azimuth: { type: "number", default: 0 },
    distance: { type: "number", default: 8000 }
  },

  init() {
    this.sky = new THREE.Sky();
    this.el.setObject3D("mesh", this.sky);
  },

  update(oldData) {
    const uniforms = this.sky.material.uniforms;

    if (this.data.turbidity !== oldData.turbidity) {
      uniforms.turbidity.value = this.data.turbidity;
    }

    if (this.data.rayleigh !== oldData.rayleigh) {
      uniforms.rayleigh.value = this.data.rayleigh;
    }

    if (this.data.luminance !== oldData.luminance) {
      uniforms.luminance.value = this.data.luminance;
    }

    if (this.data.mieCoefficient !== oldData.mieCoefficient) {
      uniforms.mieCoefficient.value = this.data.mieCoefficient;
    }

    if (this.data.mieDirectionalG !== oldData.mieDirectionalG) {
      uniforms.mieDirectionalG.value = this.data.mieDirectionalG;
    }

    if (
      this.data.inclination !== oldData.inclination ||
      this.data.azimuth !== oldData.azimuth ||
      this.data.distance !== oldData.distance
    ) {
      const theta = Math.PI * (this.data.inclination - 0.5);
      const phi = 2 * Math.PI * (this.data.azimuth - 0.5);

      const distance = this.data.distance;

      const x = distance * Math.cos(phi);
      const y = distance * Math.sin(phi) * Math.sin(theta);
      const z = distance * Math.sin(phi) * Math.cos(theta);

      uniforms.sunPosition.value.set(x, y, z).normalize();

      // HACK Remove this if condition and always set the scale based on distance when the existing environments
      // have their sky scales set to 1.
      if (this.el.object3D.scale.x === 1) {
        this.sky.scale.set(distance, distance, distance);
      }
    }
  },

  remove() {
    this.el.removeObject3D("mesh");
  }
});