Newer
Older
import { Layers } from "./layers";
import "../vendor/Water";
/**
* @author jbouny / https://github.com/jbouny
*
* Work based on :
* @author Slayvin / http://slayvin.net : Flat mirror for three.js
* @author Stemkoski / http://www.adelphi.edu/~stemkoski : An implementation of water shader based on the flat mirror
* @author Jonas Wagner / http://29a.ch/ && http://29a.ch/slides/2012/webglwater/ : Water shader explanations in WebGL
*/
function MobileWater(geometry, options) {
THREE.Mesh.call(this, geometry);
const scope = this;
options = options || {};
const time = options.time !== undefined ? options.time : 0.0;
const normalSampler = options.waterNormals !== undefined ? options.waterNormals : null;
options.sunDirection !== undefined ? options.sunDirection : new THREE.Vector3(0.70707, 0.70707, 0.0);
const sunColor = new THREE.Color(options.sunColor !== undefined ? options.sunColor : 0xffffff);
const waterColor = new THREE.Color(options.waterColor !== undefined ? options.waterColor : 0x7f7f7f);
const eye = options.eye !== undefined ? options.eye : new THREE.Vector3(0, 0, 0);
const distortionScale = options.distortionScale !== undefined ? options.distortionScale : 20.0;
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
const side = options.side !== undefined ? options.side : THREE.FrontSide;
const fog = options.fog !== undefined ? options.fog : false;
const mirrorShader = {
uniforms: THREE.UniformsUtils.merge([
THREE.UniformsLib["lights"],
{
normalSampler: { value: null },
time: { value: 0.0 },
size: { value: 1.0 },
distortionScale: { value: 20.0 },
sunColor: { value: new THREE.Color(0x7f7f7f) },
sunDirection: { value: new THREE.Vector3(0.70707, 0.70707, 0) },
eye: { value: new THREE.Vector3() },
waterColor: { value: new THREE.Color(0x555555) }
}
]),
vertexShader: `
uniform float time;
varying vec4 worldPosition;
void main() {
worldPosition = modelMatrix * vec4( position, 1.0 );
vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );
gl_Position = projectionMatrix * mvPosition;
}
`,
fragmentShader: `
uniform float time;
uniform float size;
uniform float distortionScale;
uniform sampler2D normalSampler;
uniform vec3 sunColor;
uniform vec3 sunDirection;
uniform vec3 eye;
uniform vec3 waterColor;
varying vec4 worldPosition;
vec4 getNoise( vec2 uv ) {
vec2 uv0 = ( uv / 103.0 ) + vec2(time / 17.0, time / 29.0);
vec2 uv1 = uv / 107.0-vec2( time / -19.0, time / 31.0 );
vec2 uv2 = uv / vec2( 8907.0, 9803.0 ) + vec2( time / 101.0, time / 97.0 );
vec2 uv3 = uv / vec2( 1091.0, 1027.0 ) - vec2( time / 109.0, time / -113.0 );
vec4 noise = texture2D( normalSampler, uv0 ) +
texture2D( normalSampler, uv1 ) +
texture2D( normalSampler, uv2 ) +
texture2D( normalSampler, uv3 );
return noise * 0.5 - 1.0;
}
void sunLight( const vec3 surfaceNormal, const vec3 eyeDirection, float shiny, float spec, float diffuse, inout vec3 diffuseColor, inout vec3 specularColor ) {
vec3 reflection = normalize( reflect( -sunDirection, surfaceNormal ) );
float direction = max( 0.0, dot( eyeDirection, reflection ) );
specularColor += pow( direction, shiny ) * sunColor * spec;
diffuseColor += max( dot( sunDirection, surfaceNormal ), 0.0 ) * sunColor * diffuse;
}
${THREE.ShaderChunk["common"]}
${THREE.ShaderChunk["packing"]}
${THREE.ShaderChunk["bsdfs"]}
${THREE.ShaderChunk["lights_pars_begin"]}
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
void main() {
vec4 noise = getNoise( worldPosition.xz * size );
vec3 surfaceNormal = normalize( noise.xzy * vec3( 1.5, 1.0, 1.5 ) );
vec3 diffuseLight = vec3(0.0);
vec3 specularLight = vec3(0.0);
vec3 worldToEye = eye-worldPosition.xyz;
vec3 eyeDirection = normalize( worldToEye );
sunLight( surfaceNormal, eyeDirection, 100.0, 2.0, 0.5, diffuseLight, specularLight );
float theta = max( dot( eyeDirection, surfaceNormal ), 0.0 );
float rf0 = 0.3;
float reflectance = rf0 + ( 1.0 - rf0 ) * pow( ( 1.0 - theta ), 5.0 );
vec3 scatter = max( 0.0, dot( surfaceNormal, eyeDirection ) ) * waterColor;
vec3 albedo = mix( ( sunColor * diffuseLight * 0.3 + scatter ), ( 0.5 + specularLight ), reflectance);
vec3 outgoingLight = albedo;
gl_FragColor = vec4( outgoingLight, 1 );
}
`
};
const material = new THREE.ShaderMaterial({
fragmentShader: mirrorShader.fragmentShader,
vertexShader: mirrorShader.vertexShader,
uniforms: THREE.UniformsUtils.clone(mirrorShader.uniforms),
transparent: false,
lights: true,
side: side,
fog: fog
});
material.uniforms.time.value = time;
material.uniforms.normalSampler.value = normalSampler;
material.uniforms.sunColor.value = sunColor;
material.uniforms.waterColor.value = waterColor;
material.uniforms.sunDirection.value = sunDirection;
material.uniforms.distortionScale.value = distortionScale;
material.uniforms.eye.value = eye;
scope.material = material;
}
MobileWater.prototype = Object.create(THREE.Mesh.prototype);
MobileWater.prototype.constructor = THREE.Water;
AFRAME.registerComponent("water", {
schema: {
waterColor: { type: "color", default: "#001e0f" },
distortionScale: { type: "number", default: 3.7 },
sunColor: { type: "color", default: "#ffffff" },
inclination: { type: "number", default: 0 },
azimuth: { type: "number", default: 0 },
distance: { type: "number", default: 1 },
speed: { type: "number", default: 0.1 },
forceMobile: { type: "boolean", default: false },
Robert Long
committed
normalMap: { type: "asset", default: "#water-normal-map" }
const waterMesh = this.el.getObject3D("mesh");
const waterGeometry = waterMesh.geometry;
// Render THREE.Water shader instead of THREE.Mesh
waterMesh.visible = false;
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
const waterNormals = new THREE.Texture(this.data.normalMap);
waterNormals.wrapS = waterNormals.wrapT = THREE.RepeatWrapping;
waterNormals.needsUpdate = true;
const waterConfig = {
textureWidth: 512,
textureHeight: 512,
waterNormals: waterNormals,
sunDirection: this.data.sunDirection,
sunColor: new THREE.Color(this.data.sunColor),
waterColor: new THREE.Color(this.data.waterColor),
distortionScale: this.data.distortionScale,
fog: false
};
if (AFRAME.utils.device.isMobile() || this.data.forceMobile) {
this.water = new MobileWater(waterGeometry, waterConfig);
} else {
this.water = new THREE.Water(waterGeometry, waterConfig);
this.water.mirrorCamera.layers.set(Layers.reflection);
}
this.el.setObject3D("water", this.water);
},
update(oldData) {
const uniforms = this.water.material.uniforms;
if (this.data.forceMobile !== oldData.forceMobile) {
this.el.removeObject3D("water");
this.init();
return;
}
if (this.data.waterColor !== oldData.waterColor) {
uniforms.waterColor.value.setStyle(this.data.waterColor);
}
if (this.data.distortionScale !== oldData.distortionScale) {
uniforms.distortionScale.value = this.data.distortionScale;
}
if (this.data.sunColor !== oldData.sunColor) {
uniforms.sunColor.value.setStyle(this.data.sunColor);
}
if (
this.data.inclination !== oldData.inclination ||
this.data.azimuth !== oldData.azimuth ||
this.data.distance !== oldData.distance
) {
const theta = Math.PI * (this.data.inclination - 0.5);
const phi = 2 * Math.PI * (this.data.azimuth - 0.5);
const distance = this.data.distance;
const x = distance * Math.cos(phi);
const y = distance * Math.sin(phi) * Math.sin(theta);
const z = distance * Math.sin(phi) * Math.cos(theta);
uniforms.sunDirection.value.set(x, y, z);
}
},
tick(time) {
this.water.material.uniforms.time.value = (time / 1000) * this.data.speed;
},
remove() {
this.el.removeObject3D("water");
const waterMesh = this.el.getObject3D("mesh");
waterMesh.visible = true;