Skip to content
Snippets Groups Projects
Commit 7a1ee166 authored by b1jeong's avatar b1jeong
Browse files

split scripts

parents 339e1d63 d1b7b6d9
No related branches found
No related tags found
No related merge requests found
Pipeline #9542 passed
......@@ -44,12 +44,12 @@ spec:
persistentVolumeClaim:
claimName: modeltraining
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: gpu-type
operator: In # Use NotIn for other types
values:
- M40
# affinity:
# nodeAffinity:
# requiredDuringSchedulingIgnoredDuringExecution:
# nodeSelectorTerms:
# - matchExpressions:
# - key: gpu-type
# operator: In # Use NotIn for other types
# values:
# - M40
to use this demo, go to the notebook provided and enter the correct pathway to the model (h5 file) and the image directory. Everything else should be provided.
\ No newline at end of file
%% Cell type:code id: tags:
``` python
import tensorflow as tf
import os
from PIL import Image
import numpy as np
import cv2
import re
```
%% Cell type:code id: tags:
``` python
tf.test.is_built_with_cuda()
tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None)
```
%% Output
True
%% Cell type:code id: tags:
``` python
test = np.array([1,2,3,4])
test/4
```
%% Output
array([0.25, 0.5 , 0.75, 1. ])
%% Cell type:code id: tags:
``` python
pathToModel = "/userdata/kerasData/firstSplitmodel.h5"
pathToImageDir = "/userdata/kerasData/images/setForLk"
pathToModel = "/firstSplitmodel.h5"
pathToImageDir = "/images/setForLk"
```
%% Cell type:code id: tags:
``` python
def loadData(datasetPath):
tempF = []
fireLabel = []
for element in os.listdir(datasetPath):
if re.search('\+', element):
fireLabel.append(1)
else:
fireLabel.append(0)
image = cv2.imread(datasetPath + "/"+ element)
image = cv2.resize(image, (128,128))
tempF.append(image)
labels = np.array(fireLabel)
labels = tf.keras.utils.to_categorical(labels, num_classes=2)
data = np.array(tempF)
data = np.true_divide(data, 255)
return data, labels
data, Label = loadData(pathToImageDir)
# cv2.imread("/userdata/kerasData/images/setForLk/1512676384_+02400.jpg")
```
%% Cell type:code id: tags:
``` python
model = tf.keras.models.load_model(pathToImageDirectory)
```
%% Cell type:code id: tags:
``` python
model.predict(data)
```
%% Output
array([[0.5107457 , 0.4892543 ],
[0.41123033, 0.5887697 ],
[0.43183708, 0.56816286],
[0.44897774, 0.55102223],
[0.47739947, 0.52260053],
[0.3578842 , 0.6421158 ],
[0.4941746 , 0.5058254 ],
[0.34056282, 0.6594372 ],
[0.35624158, 0.64375836],
[0.47470272, 0.5252973 ],
[0.4808885 , 0.5191116 ],
[0.431317 , 0.568683 ],
[0.5134212 , 0.4865788 ],
[0.40128127, 0.59871876],
[0.4639625 , 0.53603756],
[0.35375822, 0.64624184],
[0.36264202, 0.63735795],
[0.45890424, 0.5410958 ],
[0.33185333, 0.66814667],
[0.3523977 , 0.6476023 ],
[0.34115818, 0.6588418 ],
[0.48866385, 0.5113361 ],
[0.455409 , 0.544591 ],
[0.46895435, 0.5310457 ],
[0.38263088, 0.6173691 ],
[0.5233783 , 0.47662166],
[0.44299665, 0.5570033 ],
[0.47639135, 0.5236086 ],
[0.3761411 , 0.6238589 ],
[0.47419727, 0.52580273],
[0.40086877, 0.5991312 ],
[0.48351654, 0.5164834 ],
[0.43688735, 0.5631126 ],
[0.4520515 , 0.5479485 ],
[0.3890876 , 0.6109124 ],
[0.4929448 , 0.50705516],
[0.35062018, 0.64937985],
[0.46544933, 0.53455067],
[0.4987746 , 0.5012254 ],
[0.4678061 , 0.53219396],
[0.468355 , 0.53164506],
[0.37291136, 0.62708867],
[0.5106242 , 0.4893759 ],
[0.4318202 , 0.5681798 ],
[0.39998996, 0.60001004],
[0.40117145, 0.59882855],
[0.45087582, 0.5491242 ],
[0.3823646 , 0.6176354 ],
[0.3389846 , 0.6610154 ],
[0.36759573, 0.63240427],
[0.4042852 , 0.5957148 ],
[0.39802316, 0.6019768 ],
[0.34497583, 0.6550242 ],
[0.4933747 , 0.5066253 ],
[0.4834825 , 0.51651746],
[0.43642092, 0.5635791 ],
[0.47396407, 0.52603596],
[0.4887493 , 0.5112507 ],
[0.47656032, 0.52343965],
[0.46176285, 0.53823715],
[0.37929055, 0.6207095 ],
[0.49937135, 0.50062865],
[0.48522255, 0.5147774 ],
[0.45080933, 0.5491907 ],
[0.46133736, 0.5386627 ],
[0.39081547, 0.60918456],
[0.41144982, 0.58855015],
[0.52494085, 0.47505915],
[0.38156646, 0.61843354],
[0.36862728, 0.6313727 ],
[0.4544768 , 0.5455232 ],
[0.34168276, 0.6583172 ],
[0.37399516, 0.6260049 ],
[0.47957534, 0.52042466],
[0.50483143, 0.49516863],
[0.4877852 , 0.5122148 ],
[0.42307466, 0.57692534],
[0.51999307, 0.4800069 ],
[0.39840838, 0.60159165],
[0.4879313 , 0.5120687 ],
[0.4254754 , 0.57452464]], dtype=float32)
%% Cell type:code id: tags:
``` python
print(model.evaluate(x=data, y=Label))
print(model.metrics_names)
```
%% Output
81/1 [==============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================] - 0s 588us/sample - loss: 0.5996 - accuracy: 0.5926
[0.6112031642301583, 0.5925926]
['loss', 'accuracy']
%% Cell type:code id: tags:
``` python
```
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment